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Abstract: A comprehensive survey is presented on the recent progress in deep learning multi-modal sensor fusion 

for robotic perception and navigation.  As autonomous systems are increasingly operating in complex unstructured 

environments, having multiple sensing modalities such as RGB cameras, LiDAR, IMUs, GPS, etc. has become 

imperative to remedy the limitation of any one sensor. Deep learning has further enhanced this integration by 

facilitating strong, scalable, and adaptive fusion of heterogeneous data streams. Architectures such as CNNs, 

RNNs, Transformers, and GNNs are being used for feature extraction and fusion towards situational awareness 

and decision-making. The paper categorizes the fusion techniques into three levels: early, intermediate, and late 

fusion, analyzing the pros and cons of each. Sensor calibration, temporal synchronization, noise, and 

computational feasibility for real-time realizations are outlined among the primary challenges. This review 

emphasizes how deep learning assists not only in automatic feature extraction but also in engendering context-

aware, resilient robot behavior in dynamic environments. The paper concludes that deep learning-based multi-

modal fusion will form a critical backbone enabling future intelligent robotic systems to operate reliably and 

autonomously in myriad scenarios. 
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1. Introduction  
Advanced machine learning, especially deep learning, has empowered the fusion with autonomous systems to 

enrich advances in robotics in these recent years. A fundamental challenge with robots of late operating in complex 

and dynamic real-world environments is not just to perceive the world accurately but to interpret and act upon it 

in time. Conventional sensor systems, such as cameras or LiDAR, provide very partial information, leading to 

interpretations of the environment that are usually ambiguous or incomplete. This calls for what is known as multi-

modal sensor fusion [1]. Sensor fusion is a set of methods that combine data from different sensing modalities to 

provide a more enriched, consistent, and reliable representation of the environment. The idea is to improve a 

robot’s perception, localization, and navigation, hence allowing it to safely and efficiently perform in various 

tasks, be it autonomous driving, drone navigation, or industrial automation. Deep learning for multi-modal sensor 

fusion is, in essence, aimed at surpassing the limitations that arise from using just a single sensor system, enabling 

robots to independently navigate and make decisions in a complex environment [2]. 

Multi-modal sensor fusion has become the backbone of modern robots since it allows for assembling sensors that 

gather complementary information from an environment and merging such information to enhance the accuracy, 

strength, and versatility of a robotic system. The strength of one kind of sensor poses its limitations on another: 

viz., vision-based sensors are strongly affected by illumination; lidar provides the most precise depth information 

but may suffer from some surface properties; IMUs may drift [3]. Fusing such diverse information sources 

provides a better, more reliable understanding of the ring. This fusion becomes necessary where single-modality 

perception cannot work, e.g., low-light or cluttered environments. As a consequence, robots in multi-modal 

systems can respond to a more diversified set of objects and obstacles, improve their spatial awareness, and 

enhance their decision-making ability for more autonomous and safe tasks in navigation and task execution [4]. 

Arguably, the most suitable offering of deep learning to robotics is the automatic real-time analysis of huge 

amounts of sensor data in multi-modal fusion applications. The classical algorithms depended on handcrafted 

features and rule-based systems that were rather rigid when confronted with the intricacies and variations of the 

real-world environment. On the other hand, deep learning algorithms, primarily CNNs, RNNs, and more recently 

transformer models, automatically learn discriminative features from the encoded raw sensor data with respect to 

the desired perception tasks, rendering perception systems far more accurate and adaptive [5]. These deep models 

shine in the presence of multi-sensory data, barring complex high-dimensionalities-from RGB images to depth 

maps and point clouds-for assessment purposes. By bringing in this technology, robots can achieve a far greater 

degree of autonomy, equipping themselves with perception, prediction, and navigation skills all far less dependent 

on human intervention [6]. Having this ability to generalize given large datasets and to quickly adapt itself to 

different environments makes deep learning paramount in the making of autonomous robots, which are now 

increasingly called to operate in truly unstructured, and unpredictable environments-urban streets, industrial sites, 

or even disaster areas. 
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Figure 1 Multi-modal Fusion for Personalized Human Intention Recognition [7] 

2. Fundamentals of Multi-Modal Sensor Fusion in Robotics 
Multi-modal sensor fusion in robotics is a process that integrates information from different sensor types ranging 

from RGB cameras, LiDARs, IMUs, and GPS to ultimately equip the robot with perception and decision-making 

abilities. By integrating the strengths of different sensors, robots can minimize their respective weaknesses, 

improving overall accuracy and robustness in dynamic environments. The fusion itself can happen at several 

stages: Early fusion considers the fusion of data at the raw level, intermediate fusion at the feature level, and late 

fusion at the decision or output level [8]. Traditional methods have mostly relied on rules, such as Kalman filters, 

and even with explicit definition of features, criteria for fusion, and time constraints, deep learning enables 

automatic extraction of features and fusion, offering a more versatile and adaptive way of fusion. Still, issues such 

as calibration, noise, and synchronization pose hard challenges with computational constraints; thus, designing an 

optimized fusion system is vital in real-time robotic applications [9]. 

A. Types of Sensors Used in Robotics 

Various sensors allow a robot to be aware of its environment: each comes with its own pros and cons. In general, 

RGB cameras are used for object recognition and scene understanding but cannot be relied upon in low-light 

conditions. LiDAR measures distances accurately for mapping and obstacle detection in tough situations such as 

darkness or fog; nonetheless, in cluttered environments, it gets limited in terms of range and resolution. IMUs 

track movements and help in stabilizing robots, especially when operating in GPS-denied environments; however, 

drift errors become an issue as time goes on. GPS sensors are used in outdoor navigation with the best positional 

accuracy but are disrupted when used in obstructed regions, such as with high-rise buildings or indoors. Audio 

sensors, mainly microphones, assist in localizing sounds and recognizing speech; however, one needs to use noise-

filtering techniques, or else they may fail in noisy surroundings. By fusing these sensors, one can overcome the 

limitations of the individual sensors and have a richer understanding of the environment. 

1 RGB cameras 

RGB cameras are the most common across all types of robots sensing environment for dark color images. They 

work quite similarly to human vision, providing the visual data necessary to execute tasks such as recognizing 

objects, understanding scenes, or visual navigation. RGB cameras help with the identification of objects, tracking 

movement, and interfacing with the environment. These cameras do have their drawbacks. These cameras are 

susceptible to lighting conditions, which is to say that their effectiveness diminishes when in low light roles in too 

much light [10]. Also, considerations of shadow, reflection, and poor illumination distract them, degrading their 

reliability under various conditions. Yet, despite these issues, they continue into the mainstream in almost every 

robotic vision system because they produce rich visual information [11]. 

2 LiDAR (Light Detection and Ranging) 

A LiDAR is a laser-based distance-measuring device that emits light and measures the time it takes for the light 

to be reflected back from objects in the environment. With the capability to generate accurate 3D maps with large 

spatial resolution, these systems prove to be a boon in obstacle detection, path planning, and environment 

modelling [12]. In navigation, LiDAR sensors are also handy as they are able to measure distances in conditions 

wherein optical systems such as cameras might fail-like in darkness or fog. Despite the usefulness, LiDAR systems 
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show some drawbacks. They could have a limited range and resolution in highly structed or cluttered 

environments, thus causing problems when detecting smaller objects or objects farther away [13]. 

3 IMU (Inertial Measurement Unit) 

An inertial measurement unit (IMU) is a type of sensor used for the measurement of movement parameters, such 

as acceleration, angular velocity, and orientation. IMUs are vital to robotics in motion tracking, position 

estimation, and stabilizing the robot through motion. They have the best application where GPS signals are weak 

to almost non-existent, such an environment that might be indoors or underground [14]. IMUs effectively let the 

robot operate with motion while confronting these types of environments by giving out real-time data concerning 

their motion. The downside is that the IMUs can have drift errors in their measurements as time goes by; this one 

mean that the IMU estimates of position and orientation become less useful and inaccurate with time without an 

external measure. This is why they are often used in fusion systems alongside others [15]. 

4 GPS Sensors 

Global Positioning System (GPS) sensors find extensive use in outdoor robotic applications for the computation 

of exact geometric location data. Receiving signals from a constellation of satellites allows robots to pinpoint their 

position with great precision over large spatial areas [16]. Thus, autonomous vehicles and drones, as well as any 

robot working in the large-sized outdoors where precise navigation gets employed by the term, finds GPS highly 

useful for route planning, geofencing, or outdoor navigation. With all its potentials, GPS sensors, however, do 

have some demerits. The tools tend to do well depending on the direct view of satellites and tend to limit 

themselves as soon as they become obstructed in some so dense urban environment, indoor location, or under 

heavy tree cover from the reflection or blocking of signal [17]. 

5 Audio Sensors 

Audio sensors convert sound waves into a proper form, usually using microphones. For example, audio signals 

are used by robots that facilitate sound localization, recognize speech, and are environment-aware. Likewise, 

search-and-rescue robots employ audio sensors to pick up on human voices or any other sounds that may imply 

the presence of people or hazards [18]. Human-robot interaction also depends on microphones for the recognition 

of voice commands. Nevertheless, an inferior-quality audio sensor can pose a problem: it captures background 

noise and may have trouble differentiating between the noises of concern and ambient ones, especially in louder 

environments. Hence, they tend to be less useful in some environments unless in conjunction with the noise-

mitigation techniques [19]. 

B. Fusion Levels 

Sensor fusion is simply the joining of data generated by multiple sensors in a bid to provide an improved 

comprehension of the environment by the robot. Fusion in this case can occur at different levels of the processing 

pipeline, generally divided into early fusion, intermediate fusion, and late fusion. Early fusion refers to the 

combination of raw data coming from different sensors before individual analysis is performed. For instance, one 

could combine raw images coming from a camera with depth information coming from LiDAR at the pixel level 

to generate a richer representation of the scene [20]. While early fusion attempts to leverage fully the 

complementary nature of different sensors, it usually places stringent requirements on synchronization or 

alignment of data, rendering it computationally expensive and complex. Intermediate fusion is the stage where 

sensor data are individually processed to extract useful features (such as object contours or motion patterns) that 

are then combined for further processing [21]. This method works better in terms of computing power than early 

fusion and has more flexibility in terms of data treatments, thus making it more adaptable to different 

implementations on robots. Late fusion is the most modular approach in which data from each sensor is processed 

separately until the decision is made when the fusion of the output of each one occurs. For example, separate 

object detectors on RGB data and LiDAR data output their predictions that are subsequently fused to make the 

final decision on what actions the robot takes. Late fusion is computationally less costly and easier to design but 

cannot exploit the interrelationships across different sensor modalities to their full extent, resulting in cases when 

performance could be less desirable [22]. 

C. Challenges in Multi-Modal Sensor Fusion 

Although multi-modal sensor fusion in robotics is highly consistent with its common purpose of working together, 

some major inconsistencies have to be resolved towards successful implementation. The major concerns include 

sensor calibration, which pertains to the alignment of the sensor data on the spatial-temporal spectrum. For 

instance, a LiDAR sensor may have a far different field of view and resolution compared to the RGB camera, 

making it challenging to combine data from them without introducing errors [23]. Sensor noise is another one, 

and these noise levels vary with respect to the environment, so a specific data set might contain noise or be 

unreliable. For example, an IMU sensor may drift, and a LiDAR might run into reflective surfaces distorting depth 

measurements. Synchronizing data across sensors is another hindrance because these sensors subscribe to different 

sampling rates. For example, a camera may be designing a picture every 30 seconds, whereas a LiDAR can be 

analysing his scene texture at a very low number of frames per second. Temporal alignment of the data from both 

sensors prior to fusion is mandatory for meaningful fusion results [24]. Real-time feasibility is another bottleneck. 

Robotics-based applications in dynamic environments pitch immediate decisions over fused sensor data. Large 
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volumes of multi-modal data throughputs are crucial to ensure real-time performances, which in itself is a 

bottleneck of computational capacities. Then comes the question of robustness, for the ability of a robot to carry 

out its tasks in unstructured environments is paramount. The fusion has to adapt where either of the sensors fails 

or gets obstructed, or faces some environmental issues like poor lighting or dense fog [25]. 

3. Traditional vs. Deep Learning-Based Approaches 
Conventional sensor fusion techniques in robotics were mostly implemented with handcrafted features and rule-

based algorithms. The practitioner manually selects relevant characteristics from sensor data: such features could 

be edges from images or distances from LiDAR. Then an algorithm, such as a Kalman filter or a particle filter, 

will combine the information to provide an estimate. These traditional techniques had served well under controlled 

environments with predictable data but struggled when dealing with noisy, incomplete, or complex realities of 

real-world data [26]. Also, the techniques needed heavy weight domain knowledge and constant tuning, which 

restricted their flexibility and adaptability. On the other hand, deep learning methods have energized the field of 

sensor fusion by automating the extraction of relevant features and end-to-end sensor data fusion. Different deep 

learning models, such as convolutional neural networks (CNNs) for image data and recurrent neural networks 

(RNNs) for temporal data, can learn complex correlations existing in multi-modal sensor data without feature 

engineering. Such models work well with noisy and unstructured data and exhibit good generalization ability in 

varying environments [27]. Another significant advantage of deep learning lies in its capability to learn from big 

data and robustly handle diverse sensor modalities so that every environmental variation can be considered. 

Nevertheless, fusion methods derived from deep learning have issues that are challenging to overcome, including 

the requirement of lots of annotated data for the training, large computational costs, and hard-to-understand model 

decisions. Meanwhile, the deep learning paradigm gives some flexibility, accuracy, and scalability that traditional 

methods hard to achieve-most of the time-end up being the default in most systems [28]. 

 

4. Deep Learning Techniques for Multi-Modal Fusion 
Deep learning techniques in multi-modal fusion use state-of-the-art neural network architectures for data 

integration from various sensors including cameras, LiDARs, IMUs, and GPSs to enhance perception and 

decision-making in robotics. CNNs process images for spatial feature extraction; RNNs and LSTM handle 

temporal analysis that robots use for tracking movement and predicting future states. Transformer models are 

really good at catching long-range dependencies from heterogeneous sensor inputs, while GNNs suit sensor data 

that has a relational structure. Attention mechanisms dynamically select relevant sensor information, boosting the 

performance and efficiency of fusion steps. These deep learning techniques enable robots in understanding and 

navigating complex environments by automatically discovering the most appropriate way for combining multi-

modal data. 

A. Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks (CNNs) are among the most extensively used deep learning techniques in 

computer vision and multi-modal sensor fusion. These networks were discerned to process grid-like data such as 

images; thus, a series of convolutional layers is applied to an input image to learn spatial hierarchies of features 

automatically. In the realm of multi-modal fusion, CNNs find a great use in combining visual data with 

corresponding depth data acquired from LiDARs or other spatial sensors [29]. CNNs have it in their architecture 

to learn features and objects at different levels of abstraction and thus are able to effectively fuse the different 

sensor modalities, thereby improving tasks such as robot-based object detection, segmentation, and localization. 

These networks can handle sensor data of dimensionality and are often used as the foundational layer for deeper 

and more complex multi-modal fusion architectures [30]. 

B. Recurrent Neural Networks (RNNs) and LSTMs 

The random neural networks and long short-term memory networks (LSTMs) are developed to capture and work 

upon sequential data, hence when working with robotics-based applications where time dependency is dictated 

by sensor data, such data will include outputs from an IMU, GPS, or auditory sensors. RNNs and LSTMs model 

temporal relationships well by exploiting the nature of hidden states that can remember the past for long so as to 

grasp long-term dependence [31]. For the multi-modal sensor fusion, one would employ RNNs and LSTMs to 

process time-series data describing movement paths of a robot or predicting future states on the basis of sensor 

information received over time. This allows RNNs and LSTMs to be applied in such fields as visual odometry, 

motion tracking, and adaptation to a dynamically changing environment, in which time context and sequence 

prediction are very much needed [32]. 

C. Transformer-Based Models 

Transformer models were first introduced to NLP applications, but they are now gaining popularity in multi-modal 

fusion tasks owing to their handling of long-range dependencies and efficient capture of global concepts. 

Transformer's mechanism of self-attention allows dynamic weighing of different parts of the input, according to 

their importance, and hence is very useful in fusing heterogeneous data from different sensor types [34]. For 

instance, while fusing images with LiDAR point cloud data, the transformer model will effectively learn and 

combine which features are the relevant ones from each modality. Due to their parallelizability and scalability, 
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transformers find use in demanding and complicated multi-modal tasks of real-time applications in robotics, such 

as tracking, scene understanding, and multi-sensor localization [35]. 

D. Graph Neural Networks (GNNs) 

Graph Neural Networks (GNNs) are an emergent category for models used in multi-modal sensor fusion in 

robotics, especially when data comes with an inherent graphical structure. Within robotics, GNNs find use cases 

in multi-modal data fusion for sensors that convey relational or spatially distributed information, such as LiDAR 

point clouds, robot states, or objects within an environment [36]. A GNN system can learn to propagate 

information through the nodes of a graph to systematize spatial and topological dependencies across different 

elements (objects, locations, or events). Hence, for multi-modal fusion, GNNs are very apt in fusing sensor data 

represented heterogeneously so that the robot can perform tasks like navigation in dynamic environments, multi-

object tracking, and environment mapping [37]. 

E. Attention Mechanisms in Fusion 

Attention mechanisms are considered a distinguished feature of deep learning models for enabling them to 

concentrate on the crucial parts of input data with respect to a given task. Multi-modal sensor fusion views 

attention mechanisms as means for such models to choose dynamically which sensor inputs are relevant to the 

task at hand and to weigh their contributions from different modalities with respect to context [38]. Attention 

mechanisms could, for example, let a robot prioritize LiDAR-based information while detecting obstacles and 

visual data while recognizing objects when navigating through a cluttered environment. Convolutional neural 

networks (CNNs), recurrent neural networks (RNNs), and transformers are usually accompanied by attention 

mechanisms to help the fusion process become more interpretable and better performing under noises, incomplete 

information, and ambiguous sensor inputs. This facility is equally valuable in decision-making, path planning, 

and multi-modal perception in robotics [39]. The figure 2 shows the multi-modal fusion framework, where image 

and point cloud features are jointly processed through patch embedding, transformer-based cross attention, and 

convolutional fusion for enhanced feature representation. 

 
Figure 2 (a) The structure of the ViT multimodal fusion module, and (b) the Transformer Encoder. The fusion 

module consists of three sequential steps: patch embedding, Transformer encoder and feature fusion. The main 

blocks of Transformer encoder are MultiHead Cross-Attention and MLP blocks [40] 

 

5. Multi-Modal Fusion for Robot Perception 
The concept of multi-modal fusion for robot perception is a fundamental one in robotics, through which the robots 

aim to obtain a stronger and more complete understanding of their surroundings using various types of sensor 

data. One sensor modality includes an RGB camera, LiDAR, IMU, and radar [41]. Each sensor has its pros and 

cons; no single sensor can give perception with complete information. Cameras often provide detailed information 

but lack sufficient features to work in dimlight or when obstacles appear in between; on the other hand, LiDAR 

provides accurate depth measurements but does not give the texture or color information that cameras offer [42]. 

Hence, by fusing all the different types of sensor data, robots and their surroundings can overcome limitations 

introduced by the use of an individual sensor, granting them better awareness of their surroundings. Multi-modal 

fusion allows robots to more reliably detect and understand objects, track motion, and navigate complex 

environments [43]. All sensors complement one another by providing information that one would lack if 

implemented. 

The fusion process integrates data at different levels: early, intermediate, or late, with advanced machine learning 

models, in particular deep learning, facilitating this process. These models learn to fuse sensor data in a manner 
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that optimizes perception and maximizes decision-making capabilities of the robot. For instance, CNNs can 

process visual data, whereas RNNs can interpret time-series data from an IMU [44]. By being trained on enormous 

datasets, deep learning approaches are able to fairly accurately detect objects and avoid obstacles in abnormal and 

dynamic settings or to grasp semantic knowledge in more difficult scenarios. Moreover, with the assistance of 

attention mechanisms, robots give precedence to the most relevant data available from their sensors. Multi-modal 

fusion plays a core role in assisting robots to autonomously and efficiently operate and adapt to a wide range of 

real-world scenarios and environments [45]. 

6. Challenges 
Multi-modal sensor fusion in robotics involves several challenges that must be resolved to guarantee reliability 

and efficiency throughout performance. Calibration and alignment of sensors: distinct sensors may have different 

fields of view, resolutions, and sampling rates, causing data alignment to be inaccurate. More problems come in 

because of noise and reliability issues, as each sensor modality has faults like cameras having sensitivity in low 

light or IMUs drifting. Synchronization of collected data also poses another challenge since these sensors operate 

differently with respect to their sampling rate, and improper synchronization will yield inappropriate results from 

fusion [46]. Another aspect of concern is that it must be done in real-time as required by dynamic setups. Hence, 

with the appropriate parameters, computational effort ought to be weighed down with that of considerations 

related to efficiency when dealing with such sizable data. Environment adaptability to accommodate the robot is 

imperative; for instance, variations in illumination or obstacles are normal. Scalability and adaptability to 

supposedly include new sensors and operate in a new environment should be additional considerations. Moreover, 

providing an intelligent interpretation of complicated multi-sensory data to produce intermediate inferences for 

applications such as object detection, recognition, and navigation is still a challenge and needs more advanced 

techniques like deep learning for feature extraction and fusion. Being able to tackle such issues is very vital to let 

the robot work autonomously and efficiently in a myriad of real-world scenarios [47]. 

With extensive advances in the field of autonomous vehicles and systems, they have attained improvements for 

mobility and safety through mechanized decision-making frameworks [48], [49]. Yet, the existing techniques 

generally cannot operate well under complex settings or sufficiently embed interactions with surrounding vehicles. 

To take care of these shortcomings, AUTO framework combines deep reinforcement learning with multi-modal 

perception for adaptable decision-making in diverse environments, employing graph-based methods for state 

representation and parameterized action structures for lane following versus lane changing decisions [50], [51]. 

Additionally, there exist dynamic obstacle avoidance methods that perfectly suit real-time challenges in dynamic 

environments, with neuromorphic vision sensors feeding models designed through paradigms of deep 

reinforcement learning [52], [53]. Other avenues of advanced multi-modal learning, including those of the Uni-

Modal Teacher, enrich the learning of modality-specific representations for problems such as modality failure and 

thereby enhance downstream multi-modal task learning [54], [55]. Furthermore, multi-modal tactile sensing and 

improved 3D object detection using point clouds and RGB images give significant leverage in texture recognition 

and object localization [56]. Lastly, which have been developed recently, foster another method in trajectory 

estimation via Graph Neural Networks (GNNs) to better aid robot navigation through complex outdoor 

environments, hence showing great development in perception and decision-making for autonomous systems [57]. 

Table 1 Comparative Analysis of Multi-Modal Fusion Approaches in Robotics and Autonomous Systems 

Reference Main Focus Key Methods Primary Goal Results/Outcomes 

[48] Autonomous driving 

decision-making 

framework with deep 

reinforcement learning 

and multi-modal 

perception. 

Deep 

reinforcement 

learning (DRL), 

graph-based model, 

hybrid reward 

function. 

Optimize decision-

making and vehicle 

actions for improved 

safety, traffic 

efficiency, and 

passenger comfort. 

State-of-the-art 

performance in 

macroscopic and 

microscopic autonomous 

driving tasks. 

[49] Dynamic obstacle 

avoidance using a 

hybrid DRL-based 

multi-modal sensory 

approach. 

Event camera, deep 

reinforcement 

learning, spiking 

neural network, 

unsupervised 

representation 

learning. 

Enhance dynamic 

obstacle avoidance 

with a hybrid DRL-

based multi-modal 

sensory approach. 

Outperforms existing 

dynamic obstacle 

avoidance methods, 

especially for moving 

obstacles. 
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[50] Improving multi-

modal fusion through a 

novel approach that 

resolves modality 

failure. 

Uni-Modal Teacher 

framework 

combining fusion 

objectives and uni-

modal distillation. 

Solve modality 

failure in multi-

modal fusion to 

improve individual 

modality 

representations. 

Improved representation 

learning and multi-

modal task performance 

with a significant boost 

in accuracy. 

[51] Multi-modal bionic 

finger tactile sensor for 

texture recognition 

with wavelet transform 

and CNN. 

Multi-modal bionic 

finger tactile 

sensor, wavelet 

transform, CBAM-

CNN for feature 

fusion. 

Improve tactile 

texture recognition 

by fusing multi-

modal tactile signals 

and CNN-based 

models. 

Achieved high tactile 

texture recognition 

accuracy across multiple 

datasets with CBAM-

CNN. 

[52] Improved anchor 

generation for 3D 

object detection by 

using 2D guidance and 

multi-layer fusion. 

2D detector-based 

anchor generation, 

multi-layer fusion 

model with BEV 

representation for 

point cloud. 

Optimize 3D object 

detection by using 

guided anchor 

generation and multi-

layer feature fusion. 

Improved anchor 

generation for 3D object 

detection with better 

precision and 

performance on KITTI. 

[53] Analysis of perception 

fusion driving in 

autonomous driving 

systems. 

Perception fusion 

techniques applied 

in autonomous 

driving with AI-

driven decision 

systems. 

Evaluate and 

enhance autonomous 

driving perception 

systems with AI-

driven decision 

systems. 

Perception fusion 

analysis for autonomous 

driving, highlighting the 

benefits of multi-source 

sensor fusion. 

[54] Open-source design for 

a multi-modal tactile 

sensing module for 

robotic hands. 

Compliant tactile 

sensing module 

design with 3D 

printed molds, ROS 

support. 

Design and fabricate 

an open-source, 

compliant multi-

modal tactile sensor 

for robotic 

applications. 

Effective tactile sensing 

module for robotics, with 

easy assembly and wide 

applicability in various 

robots. 

[55] Bi-stage multi-modal 

fusion method for 

high-precision 3D 

instance segmentation 

in workshops. 

RGB-D multi-

modal fusion, 2D 

prior information, 

correlation filtering 

for 3D 

segmentation. 

Enable high-

precision 3D instance 

segmentation 

without 3D labels 

using multi-modal 

fusion. 

Achieved accurate 3D 

segmentation in a 

production workshop 

with improved 

performance over RGB-

only methods. 

[56] Trajectory prediction 

using multi-modal 

sensory inputs (RGB, 

LiDAR, odometry) for 

robot navigation. 

Graph Neural 

Networks (GNN), 

attention-based 

model for trajectory 

success probability 

prediction. 

Improve trajectory 

prediction and robot 

navigation in 

complex 

environments with 

multi-modal fusion. 

Improved trajectory 

prediction with increased 

navigation success rate 

and decreased false 

positives. 

[57] Learning manipulation 

tasks through video-

captioning and multi-

modal fusion for robot 

task execution. 

Multi-modal fusion 

for video 

captioning, action 

classifier, keyframe 

alignment, and 

command decoder. 

Train robots to learn 

manipulation tasks 

from human 

demonstrations using 

multi-modal fusion. 

Significant 

improvements in 

translation accuracy of 

commands for 

manipulation tasks in 

robots. 

 

7. Conclusion 
Deep learning-fortified multi-modal fusion constitutes a new paradigm disruptor in robotics perception and 

autonomy. Considered truly complementary, the sensor combinations lend additional situational awareness, 

navigation, and decision-making capabilities to the robots. While classical methods were restricted by human-

made rules and hard designs, deep learning-based models could adopt a flexible data-driven approach to extract 

and fuse rich and pertinent features with complex, noisy, and asynchronous sensor data streams. Despite the 

hurdles in sensor misalignment and high computational overhead, the ever-growing developments of advanced 
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neural architectures and fusion methods, such as those based on attention and transformer models, suggest that 

scalable and near real-time implementations may be realized soon in dynamic scenarios. Multi-modal fusion is, 

thus, firmly set to continue driving the agenda for the generation of truly robust, highly adaptive, and highly 

intelligent robotic systems into the coming years. 
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