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Abstract: A comprehensive survey is presented on the recent progress in deep learning multi-modal sensor fusion
for robotic perception and navigation. As autonomous systems are increasingly operating in complex unstructured
environments, having multiple sensing modalities such as RGB cameras, LiDAR, IMUs, GPS, etc. has become
imperative to remedy the limitation of any one sensor. Deep learning has further enhanced this integration by
facilitating strong, scalable, and adaptive fusion of heterogeneous data streams. Architectures such as CNN,
RNNs, Transformers, and GNNs are being used for feature extraction and fusion towards situational awareness
and decision-making. The paper categorizes the fusion techniques into three levels: early, intermediate, and late
fusion, analyzing the pros and cons of each. Sensor calibration, temporal synchronization, noise, and
computational feasibility for real-time realizations are outlined among the primary challenges. This review
emphasizes how deep learning assists not only in automatic feature extraction but also in engendering context-
aware, resilient robot behavior in dynamic environments. The paper concludes that deep learning-based multi-
modal fusion will form a critical backbone enabling future intelligent robotic systems to operate reliably and
autonomously in myriad scenarios.
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1. Introduction
Advanced machine learning, especially deep learning, has empowered the fusion with autonomous systems to
enrich advances in robotics in these recent years. A fundamental challenge with robots of late operating in complex
and dynamic real-world environments is not just to perceive the world accurately but to interpret and act upon it
in time. Conventional sensor systems, such as cameras or LIDAR, provide very partial information, leading to
interpretations of the environment that are usually ambiguous or incomplete. This calls for what is known as multi-
modal sensor fusion [1]. Sensor fusion is a set of methods that combine data from different sensing modalities to
provide a more enriched, consistent, and reliable representation of the environment. The idea is to improve a
robot’s perception, localization, and navigation, hence allowing it to safely and efficiently perform in various
tasks, be it autonomous driving, drone navigation, or industrial automation. Deep learning for multi-modal sensor
fusion is, in essence, aimed at surpassing the limitations that arise from using just a single sensor system, enabling
robots to independently navigate and make decisions in a complex environment [2].
Multi-modal sensor fusion has become the backbone of modern robots since it allows for assembling sensors that
gather complementary information from an environment and merging such information to enhance the accuracy,
strength, and versatility of a robotic system. The strength of one kind of sensor poses its limitations on another:
viz., vision-based sensors are strongly affected by illumination; lidar provides the most precise depth information
but may suffer from some surface properties; IMUs may drift [3]. Fusing such diverse information sources
provides a better, more reliable understanding of the ring. This fusion becomes necessary where single-modality
perception cannot work, e.g., low-light or cluttered environments. As a consequence, robots in multi-modal
systems can respond to a more diversified set of objects and obstacles, improve their spatial awareness, and
enhance their decision-making ability for more autonomous and safe tasks in navigation and task execution [4].
Arguably, the most suitable offering of deep learning to robotics is the automatic real-time analysis of huge
amounts of sensor data in multi-modal fusion applications. The classical algorithms depended on handcrafted
features and rule-based systems that were rather rigid when confronted with the intricacies and variations of the
real-world environment. On the other hand, deep learning algorithms, primarily CNNs, RNNs, and more recently
transformer models, automatically learn discriminative features from the encoded raw sensor data with respect to
the desired perception tasks, rendering perception systems far more accurate and adaptive [5]. These deep models
shine in the presence of multi-sensory data, barring complex high-dimensionalities-from RGB images to depth
maps and point clouds-for assessment purposes. By bringing in this technology, robots can achieve a far greater
degree of autonomy, equipping themselves with perception, prediction, and navigation skills all far less dependent
on human intervention [6]. Having this ability to generalize given large datasets and to quickly adapt itself to
different environments makes deep learning paramount in the making of autonomous robots, which are now
increasingly called to operate in truly unstructured, and unpredictable environments-urban streets, industrial sites,
or even disaster areas.
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2. Fundamentals of Multi-Modal Sensor Fusion in Robotics
Multi-modal sensor fusion in robotics is a process that integrates information from different sensor types ranging
from RGB cameras, LiDARs, IMUs, and GPS to ultimately equip the robot with perception and decision-making
abilities. By integrating the strengths of different sensors, robots can minimize their respective weaknesses,
improving overall accuracy and robustness in dynamic environments. The fusion itself can happen at several
stages: Early fusion considers the fusion of data at the raw level, intermediate fusion at the feature level, and late
fusion at the decision or output level [8]. Traditional methods have mostly relied on rules, such as Kalman filters,
and even with explicit definition of features, criteria for fusion, and time constraints, deep learning enables
automatic extraction of features and fusion, offering a more versatile and adaptive way of fusion. Still, issues such
as calibration, noise, and synchronization pose hard challenges with computational constraints; thus, designing an
optimized fusion system is vital in real-time robotic applications [9].

A. Types of Sensors Used in Robotics
Various sensors allow a robot to be aware of its environment: each comes with its own pros and cons. In general,
RGB cameras are used for object recognition and scene understanding but cannot be relied upon in low-light
conditions. LIDAR measures distances accurately for mapping and obstacle detection in tough situations such as
darkness or fog; nonetheless, in cluttered environments, it gets limited in terms of range and resolution. IMUs
track movements and help in stabilizing robots, especially when operating in GPS-denied environments; however,
drift errors become an issue as time goes on. GPS sensors are used in outdoor navigation with the best positional
accuracy but are disrupted when used in obstructed regions, such as with high-rise buildings or indoors. Audio
sensors, mainly microphones, assist in localizing sounds and recognizing speech; however, one needs to use noise-
filtering techniques, or else they may fail in noisy surroundings. By fusing these sensors, one can overcome the
limitations of the individual sensors and have a richer understanding of the environment.

1 RGB cameras
RGB cameras are the most common across all types of robots sensing environment for dark color images. They
work quite similarly to human vision, providing the visual data necessary to execute tasks such as recognizing
objects, understanding scenes, or visual navigation. RGB cameras help with the identification of objects, tracking
movement, and interfacing with the environment. These cameras do have their drawbacks. These cameras are
susceptible to lighting conditions, which is to say that their effectiveness diminishes when in low light roles in too
much light [10]. Also, considerations of shadow, reflection, and poor illumination distract them, degrading their
reliability under various conditions. Yet, despite these issues, they continue into the mainstream in almost every
robotic vision system because they produce rich visual information [11].

2 LiDAR (Light Detection and Ranging)
A LiDAR is a laser-based distance-measuring device that emits light and measures the time it takes for the light
to be reflected back from objects in the environment. With the capability to generate accurate 3D maps with large
spatial resolution, these systems prove to be a boon in obstacle detection, path planning, and environment
modelling [12]. In navigation, LIDAR sensors are also handy as they are able to measure distances in conditions
wherein optical systems such as cameras might fail-like in darkness or fog. Despite the usefulness, LIDAR systems
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show some drawbacks. They could have a limited range and resolution in highly structed or cluttered
environments, thus causing problems when detecting smaller objects or objects farther away [13].

3 IMU (Inertial Measurement Unit)
An inertial measurement unit (IMU) is a type of sensor used for the measurement of movement parameters, such
as acceleration, angular velocity, and orientation. IMUs are vital to robotics in motion tracking, position
estimation, and stabilizing the robot through motion. They have the best application where GPS signals are weak
to almost non-existent, such an environment that might be indoors or underground [14]. IMUs effectively let the
robot operate with motion while confronting these types of environments by giving out real-time data concerning
their motion. The downside is that the IMUs can have drift errors in their measurements as time goes by; this one
mean that the IMU estimates of position and orientation become less useful and inaccurate with time without an
external measure. This is why they are often used in fusion systems alongside others [15].

4 GPS Sensors
Global Positioning System (GPS) sensors find extensive use in outdoor robotic applications for the computation
of exact geometric location data. Receiving signals from a constellation of satellites allows robots to pinpoint their
position with great precision over large spatial areas [16]. Thus, autonomous vehicles and drones, as well as any
robot working in the large-sized outdoors where precise navigation gets employed by the term, finds GPS highly
useful for route planning, geofencing, or outdoor navigation. With all its potentials, GPS sensors, however, do
have some demerits. The tools tend to do well depending on the direct view of satellites and tend to limit
themselves as soon as they become obstructed in some so dense urban environment, indoor location, or under
heavy tree cover from the reflection or blocking of signal [17].

5 = Audio Sensors
Audio sensors convert sound waves into a proper form, usually using microphones. For example, audio signals
are used by robots that facilitate sound localization, recognize speech, and are environment-aware. Likewise,
search-and-rescue robots employ audio sensors to pick up on human voices or any other sounds that may imply
the presence of people or hazards [18]. Human-robot interaction also depends on microphones for the recognition
of voice commands. Nevertheless, an inferior-quality audio sensor can pose a problem: it captures background
noise and may have trouble differentiating between the noises of concern and ambient ones, especially in louder
environments. Hence, they tend to be less useful in some environments unless in conjunction with the noise-
mitigation techniques [19].

B. Fusion Levels
Sensor fusion is simply the joining of data generated by multiple sensors in a bid to provide an improved
comprehension of the environment by the robot. Fusion in this case can occur at different levels of the processing
pipeline, generally divided into early fusion, intermediate fusion, and late fusion. Early fusion refers to the
combination of raw data coming from different sensors before individual analysis is performed. For instance, one
could combine raw images coming from a camera with depth information coming from LiDAR at the pixel level
to generate a richer representation of the scene [20]. While early fusion attempts to leverage fully the
complementary nature of different sensors, it usually places stringent requirements on synchronization or
alignment of data, rendering it computationally expensive and complex. Intermediate fusion is the stage where
sensor data are individually processed to extract useful features (such as object contours or motion patterns) that
are then combined for further processing [21]. This method works better in terms of computing power than early
fusion and has more flexibility in terms of data treatments, thus making it more adaptable to different
implementations on robots. Late fusion is the most modular approach in which data from each sensor is processed
separately until the decision is made when the fusion of the output of each one occurs. For example, separate
object detectors on RGB data and LiDAR data output their predictions that are subsequently fused to make the
final decision on what actions the robot takes. Late fusion is computationally less costly and easier to design but
cannot exploit the interrelationships across different sensor modalities to their full extent, resulting in cases when
performance could be less desirable [22].

C. Challenges in Multi-Modal Sensor Fusion
Although multi-modal sensor fusion in robotics is highly consistent with its common purpose of working together,
some major inconsistencies have to be resolved towards successful implementation. The major concerns include
sensor calibration, which pertains to the alignment of the sensor data on the spatial-temporal spectrum. For
instance, a LIDAR sensor may have a far different field of view and resolution compared to the RGB camera,
making it challenging to combine data from them without introducing errors [23]. Sensor noise is another one,
and these noise levels vary with respect to the environment, so a specific data set might contain noise or be
unreliable. For example, an IMU sensor may drift, and a LIDAR might run into reflective surfaces distorting depth
measurements. Synchronizing data across sensors is another hindrance because these sensors subscribe to different
sampling rates. For example, a camera may be designing a picture every 30 seconds, whereas a LIDAR can be
analysing his scene texture at a very low number of frames per second. Temporal alignment of the data from both
sensors prior to fusion is mandatory for meaningful fusion results [24]. Real-time feasibility is another bottleneck.
Robotics-based applications in dynamic environments pitch immediate decisions over fused sensor data. Large
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volumes of multi-modal data throughputs are crucial to ensure real-time performances, which in itself is a
bottleneck of computational capacities. Then comes the question of robustness, for the ability of a robot to carry
out its tasks in unstructured environments is paramount. The fusion has to adapt where either of the sensors fails
or gets obstructed, or faces some environmental issues like poor lighting or dense fog [25].

3. Traditional vs. Deep Learning-Based Approaches

Conventional sensor fusion techniques in robotics were mostly implemented with handcrafted features and rule-
based algorithms. The practitioner manually selects relevant characteristics from sensor data: such features could
be edges from images or distances from LiDAR. Then an algorithm, such as a Kalman filter or a particle filter,
will combine the information to provide an estimate. These traditional techniques had served well under controlled
environments with predictable data but struggled when dealing with noisy, incomplete, or complex realities of
real-world data [26]. Also, the techniques needed heavy weight domain knowledge and constant tuning, which
restricted their flexibility and adaptability. On the other hand, deep learning methods have energized the field of
sensor fusion by automating the extraction of relevant features and end-to-end sensor data fusion. Different deep
learning models, such as convolutional neural networks (CNNs) for image data and recurrent neural networks
(RNNs) for temporal data, can learn complex correlations existing in multi-modal sensor data without feature
engineering. Such models work well with noisy and unstructured data and exhibit good generalization ability in
varying environments [27]. Another significant advantage of deep learning lies in its capability to learn from big
data and robustly handle diverse sensor modalities so that every environmental variation can be considered.
Nevertheless, fusion methods derived from deep learning have issues that are challenging to overcome, including
the requirement of lots of annotated data for the training, large computational costs, and hard-to-understand model
decisions. Meanwhile, the deep learning paradigm gives some flexibility, accuracy, and scalability that traditional
methods hard to achieve-most of the time-end up being the default in most systems [28].

4. Deep Learning Techniques for Multi-Modal Fusion

Deep learning techniques in multi-modal fusion use state-of-the-art neural network architectures for data
integration from various sensors including cameras, LiDARs, IMUs, and GPSs to enhance perception and
decision-making in robotics. CNNs process images for spatial feature extraction; RNNs and LSTM handle
temporal analysis that robots use for tracking movement and predicting future states. Transformer models are
really good at catching long-range dependencies from heterogeneous sensor inputs, while GNNs suit sensor data
that has a relational structure. Attention mechanisms dynamically select relevant sensor information, boosting the
performance and efficiency of fusion steps. These deep learning techniques enable robots in understanding and
navigating complex environments by automatically discovering the most appropriate way for combining multi-
modal data.

A. Convolutional Neural Networks (CNNs)
Convolutional Neural Networks (CNNs) are among the most extensively used deep learning techniques in
computer vision and multi-modal sensor fusion. These networks were discerned to process grid-like data such as
images; thus, a series of convolutional layers is applied to an input image to learn spatial hierarchies of features
automatically. In the realm of multi-modal fusion, CNNs find a great use in combining visual data with
corresponding depth data acquired from LiDARSs or other spatial sensors [29]. CNNs have it in their architecture
to learn features and objects at different levels of abstraction and thus are able to effectively fuse the different
sensor modalities, thereby improving tasks such as robot-based object detection, segmentation, and localization.
These networks can handle sensor data of dimensionality and are often used as the foundational layer for deeper
and more complex multi-modal fusion architectures [30].

B. Recurrent Neural Networks (RNNs) and LSTMs
The random neural networks and long short-term memory networks (LSTMs) are developed to capture and work
upon sequential data, hence when working with robotics-based applications where time dependency is dictated
by sensor data, such data will include outputs from an IMU, GPS, or auditory sensors. RNNs and LSTMs model
temporal relationships well by exploiting the nature of hidden states that can remember the past for long so as to
grasp long-term dependence [31]. For the multi-modal sensor fusion, one would employ RNNs and LSTMs to
process time-series data describing movement paths of a robot or predicting future states on the basis of sensor
information received over time. This allows RNNs and LSTMs to be applied in such fields as visual odometry,
motion tracking, and adaptation to a dynamically changing environment, in which time context and sequence
prediction are very much needed [32].

C. Transformer-Based Models
Transformer models were first introduced to NLP applications, but they are now gaining popularity in multi-modal
fusion tasks owing to their handling of long-range dependencies and efficient capture of global concepts.
Transformer's mechanism of self-attention allows dynamic weighing of different parts of the input, according to
their importance, and hence is very useful in fusing heterogeneous data from different sensor types [34]. For
instance, while fusing images with LiDAR point cloud data, the transformer model will effectively learn and
combine which features are the relevant ones from each modality. Due to their parallelizability and scalability,
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transformers find use in demanding and complicated multi-modal tasks of real-time applications in robotics, such
as tracking, scene understanding, and multi-sensor localization [35].
D. Graph Neural Networks (GNNs)
Graph Neural Networks (GNNs) are an emergent category for models used in multi-modal sensor fusion in
robotics, especially when data comes with an inherent graphical structure. Within robotics, GNNs find use cases
in multi-modal data fusion for sensors that convey relational or spatially distributed information, such as LiDAR
point clouds, robot states, or objects within an environment [36]. A GNN system can learn to propagate
information through the nodes of a graph to systematize spatial and topological dependencies across different
elements (objects, locations, or events). Hence, for multi-modal fusion, GNNs are very apt in fusing sensor data
represented heterogeneously so that the robot can perform tasks like navigation in dynamic environments, multi-
object tracking, and environment mapping [37].
E. Attention Mechanisms in Fusion

Attention mechanisms are considered a distinguished feature of deep learning models for enabling them to
concentrate on the crucial parts of input data with respect to a given task. Multi-modal sensor fusion views
attention mechanisms as means for such models to choose dynamically which sensor inputs are relevant to the
task at hand and to weigh their contributions from different modalities with respect to context [38]. Attention
mechanisms could, for example, let a robot prioritize LiDAR-based information while detecting obstacles and
visual data while recognizing objects when navigating through a cluttered environment. Convolutional neural
networks (CNNs), recurrent neural networks (RNNSs), and transformers are usually accompanied by attention
mechanisms to help the fusion process become more interpretable and better performing under noises, incomplete
information, and ambiguous sensor inputs. This facility is equally valuable in decision-making, path planning,
and multi-modal perception in robotics [39]. The figure 2 shows the multi-modal fusion framework, where image
and point cloud features are jointly processed through patch embedding, transformer-based cross attention, and
convolutional fusion for enhanced feature representation.
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Figure 2 (a) The structure of the ViT multimodal fusion module, and (b) the Transformer Encoder. The fusion
module consists of three sequential steps: patch embedding, Transformer encoder and feature fusion. The main
blocks of Transformer encoder are MultiHead Cross-Attention and MLP blocks [40]

5. Multi-Modal Fusion for Robot Perception

The concept of multi-modal fusion for robot perception is a fundamental one in robotics, through which the robots
aim to obtain a stronger and more complete understanding of their surroundings using various types of sensor
data. One sensor modality includes an RGB camera, LIDAR, IMU, and radar [41]. Each sensor has its pros and
cons; no single sensor can give perception with complete information. Cameras often provide detailed information
but lack sufficient features to work in dimlight or when obstacles appear in between; on the other hand, LiDAR
provides accurate depth measurements but does not give the texture or color information that cameras offer [42].
Hence, by fusing all the different types of sensor data, robots and their surroundings can overcome limitations
introduced by the use of an individual sensor, granting them better awareness of their surroundings. Multi-modal
fusion allows robots to more reliably detect and understand objects, track motion, and navigate complex
environments [43]. All sensors complement one another by providing information that one would lack if
implemented.

The fusion process integrates data at different levels: early, intermediate, or late, with advanced machine learning
models, in particular deep learning, facilitating this process. These models learn to fuse sensor data in a manner
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that optimizes perception and maximizes decision-making capabilities of the robot. For instance, CNNs can
process visual data, whereas RNNs can interpret time-series data from an IMU [44]. By being trained on enormous
datasets, deep learning approaches are able to fairly accurately detect objects and avoid obstacles in abnormal and
dynamic settings or to grasp semantic knowledge in more difficult scenarios. Moreover, with the assistance of
attention mechanisms, robots give precedence to the most relevant data available from their sensors. Multi-modal
fusion plays a core role in assisting robots to autonomously and efficiently operate and adapt to a wide range of

real-world scenarios and environments [45].

6. Challenges
Multi-modal sensor fusion in robotics involves several challenges that must be resolved to guarantee reliability
and efficiency throughout performance. Calibration and alignment of sensors: distinct sensors may have different
fields of view, resolutions, and sampling rates, causing data alignment to be inaccurate. More problems come in
because of noise and reliability issues, as each sensor modality has faults like cameras having sensitivity in low
light or IMUs drifting. Synchronization of collected data also poses another challenge since these sensors operate
differently with respect to their sampling rate, and improper synchronization will yield inappropriate results from
fusion [46]. Another aspect of concern is that it must be done in real-time as required by dynamic setups. Hence,
with the appropriate parameters, computational effort ought to be weighed down with that of considerations
related to efficiency when dealing with such sizable data. Environment adaptability to accommodate the robot is
imperative; for instance, variations in illumination or obstacles are normal. Scalability and adaptability to
supposedly include new sensors and operate in a new environment should be additional considerations. Moreover,
providing an intelligent interpretation of complicated multi-sensory data to produce intermediate inferences for
applications such as object detection, recognition, and navigation is still a challenge and needs more advanced
techniques like deep learning for feature extraction and fusion. Being able to tackle such issues is very vital to let
the robot work autonomously and efficiently in a myriad of real-world scenarios [47].
With extensive advances in the field of autonomous vehicles and systems, they have attained improvements for
mobility and safety through mechanized decision-making frameworks [48], [49]. Yet, the existing techniques
generally cannot operate well under complex settings or sufficiently embed interactions with surrounding vehicles.
To take care of these shortcomings, AUTO framework combines deep reinforcement learning with multi-modal
perception for adaptable decision-making in diverse environments, employing graph-based methods for state
representation and parameterized action structures for lane following versus lane changing decisions [50], [51].
Additionally, there exist dynamic obstacle avoidance methods that perfectly suit real-time challenges in dynamic
environments, with neuromorphic vision sensors feeding models designed through paradigms of deep
reinforcement learning [52], [53]. Other avenues of advanced multi-modal learning, including those of the Uni-
Modal Teacher, enrich the learning of modality-specific representations for problems such as modality failure and
thereby enhance downstream multi-modal task learning [54], [55]. Furthermore, multi-modal tactile sensing and
improved 3D object detection using point clouds and RGB images give significant leverage in texture recognition
and object localization [56]. Lastly, which have been developed recently, foster another method in trajectory
estimation via Graph Neural Networks (GNNs) to better aid robot navigation through complex outdoor
environments, hence showing great development in perception and decision-making for autonomous systems [57].

Table 1 Comparative Analysis of Multi-Modal Fusion Approaches in Robotics and Autonomous Systems

Reference Main Focus Key Methods Primary Goal Results/Outcomes

[48] Autonomous  driving | Deep Optimize decision- | State-of-the-art
decision-making reinforcement making and vehicle | performance in
framework with deep | learning  (DRL), | actions for improved | macroscopic and
reinforcement learning | graph-based model, | safety, traffic | microscopic autonomous
and multi-modal | hybrid reward | efficiency, and | driving tasks.
perception. function. passenger comfort.

[49] Dynamic obstacle | Event camera, deep | Enhance = dynamic | Outperforms  existing
avoidance using a | reinforcement obstacle avoidance | dynamic obstacle
hybrid DRL-based | learning, spiking | with a hybrid DRL- | avoidance methods,
multi-modal  sensory | neural network, | based multi-modal | especially for moving
approach. unsupervised sensory approach. obstacles.

representation
learning.
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[50] Improving multi- | Uni-Modal Teacher | Solve modality | Improved representation
modal fusion through a | framework failure in multi- | learning and  multi-
novel approach that | combining fusion | modal fusion to | modal task performance
resolves modality | objectives and uni- | improve individual | with a significant boost
failure. modal distillation. | modality in accuracy.

representations.

[51] Multi-modal ~ bionic | Multi-modal bionic | Improve tactile | Achieved high tactile
finger tactile sensor for | finger tactile | texture recognition | texture recognition
texture recognition | sensor, wavelet | by fusing multi- | accuracy across multiple
with wavelet transform | transform, CBAM- | modal tactile signals | datasets with CBAM-
and CNN. CNN for feature | and CNN-based | CNN.

fusion. models.

[52] Improved anchor | 2D detector-based | Optimize 3D object | Improved anchor
generation for 3D | anchor generation, | detection by using | generation for 3D object
object detection by | multi-layer fusion | guided anchor | detection with better
using 2D guidance and | model with BEV | generation and multi- | precision and
multi-layer fusion. representation for | layer feature fusion. | performance on KITTL

point cloud.

[53] Analysis of perception | Perception fusion | Evaluate and | Perception fusion
fusion driving in | techniques applied | enhance autonomous | analysis for autonomous
autonomous  driving | in autonomous | driving  perception | driving, highlighting the
systems. driving with AI- | systems with ~Al- | benefits of multi-source

driven decision | driven decision | sensor fusion.
Systems. systems.

[54] Open-source design for | Compliant tactile | Design and fabricate | Effective tactile sensing
a multi-modal tactile | sensing module | an open-source, | module for robotics, with
sensing module for | design with 3D | compliant multi- | easy assembly and wide
robotic hands. printed molds, ROS | modal tactile sensor | applicability in various

support. for robotic | robots.
applications.

[55] Bi-stage multi-modal | RGB-D multi- | Enable high- | Achieved accurate 3D
fusion method for | modal fusion, 2D | precision3D instance | segmentation in  a
high-precision 3D | prior information, | segmentation production  workshop
instance segmentation | correlation filtering | without 3D labels | with improved
in workshops. for 3D | using multi-modal | performance over RGB-

segmentation. fusion. only methods.

[56] Trajectory  prediction | Graph Neural | Improve trajectory | Improved trajectory
using multi-modal | Networks (GNN), | prediction and robot | prediction with increased
sensory inputs (RGB, | attention-based navigation in | navigation success rate
LiDAR, odometry) for | model for trajectory | complex and  decreased false
robot navigation. success probability | environments  with | positives.

prediction. multi-modal fusion.

[57] Learning manipulation | Multi-modal fusion | Train robots to learn | Significant
tasks through video- | for video | manipulation tasks | improvements in
captioning and multi- | captioning, action | from human | translation accuracy of
modal fusion for robot | classifier, keyframe | demonstrations using | commands for
task execution. alignment, and | multi-modal fusion. | manipulation tasks in

command decoder. robots.

7. Conclusion
Deep learning-fortified multi-modal fusion constitutes a new paradigm disruptor in robotics perception and
autonomy. Considered truly complementary, the sensor combinations lend additional situational awareness,
navigation, and decision-making capabilities to the robots. While classical methods were restricted by human-
made rules and hard designs, deep learning-based models could adopt a flexible data-driven approach to extract
and fuse rich and pertinent features with complex, noisy, and asynchronous sensor data streams. Despite the
hurdles in sensor misalignment and high computational overhead, the ever-growing developments of advanced
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neural architectures and fusion methods, such as those based on attention and transformer models, suggest that
scalable and near real-time implementations may be realized soon in dynamic scenarios. Multi-modal fusion is,
thus, firmly set to continue driving the agenda for the generation of truly robust, highly adaptive, and highly
intelligent robotic systems into the coming years.
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